Abstract

Biopolymers, due to their abundance, biocompatibility, and unique properties, are very promising materials for highly selective and sensitive gas and vapor sensors. New research projects are targeting the development of highly specific biopolymer composite receptors and new transducer platforms for developing electrical noses (e-noses) for wide range applications in industry, environmental monitoring, disease monitoring, defense, and public safety. In recent years, gas sensors containing biopolymer films, self-assembled monolayers of biopolymers, carbon nanoparticle–doped biopolymer films, and biopolymers hybridized with conducting organic polymers, as well as carbon nanotubes modified with biopolymers were fabricated and tested for various gases and vapors. Sensitivity, selectivity, response time, and reversibility of biopolymer-based sensors, in general, are respectable, and thus biopolymer-based sensors are challenging traditional inorganic and organic sensors. In this review, the current development and future aspects of the new field of biopolymer gas and vapor sensors are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.