Abstract

New drugs, but also shorter, better-tolerated regimens are needed to tackle the high global burden of tuberculosis complicated by drug resistance and retroviral disease. We investigated new multiple-agent combinations over the first 14 days of treatment to assess their suitability for future development. In this prospective, randomised, early bactericidal activity (EBA) study, treatment-naive, drug-susceptible patients with uncomplicated pulmonary tuberculosis were admitted to hospitals in Cape Town, South Africa, between Oct 7, 2010, and Aug 19, 2011. Patients were randomised centrally by computer-generated randomisation sequence to receive bedaquiline, bedaquiline-pyrazinamide, PA-824-pyrazinamide, bedaquiline-PA-824, PA-824-moxifloxacin-pyrazinamide, or unmasked standard antituberculosis treatment as positive control. The primary outcome was the 14-day EBA assessed in a central laboratory from the daily fall in colony forming units (CFU) of M tuberculosis per mL of sputum in daily overnight sputum collections. Bilinear regression curves were fitted for each group separately and groups compared with ANOVA for ranks, followed by pair-wise comparisons adjusted for multiplicity. Clinical staff were partially masked but laboratory personnel were fully masked. This study is registered, NCT01215851. The mean 14-day EBA of PA-824-moxifloxacin-pyrazinamide (n=13; 0·233 [SD 0·128]) was significantly higher than that of bedaquiline (14; 0·061 [0·068]), bedaquiline-pyrazinamide (15; 0·131 [0·102]), bedaquiline-PA-824 (14; 0·114 [0·050]), but not PA-824-pyrazinamide (14; 0·154 [0·040]), and comparable with that of standard treatment (ten; 0·140 [0·094]). Treatments were well tolerated and appeared safe. One patient on PA-824-moxifloxacin-pyrazinamide was withdrawn because of corrected QT interval changes exceeding criteria prespecified in the protocol. PA-824-moxifloxacin-pyrazinamide is potentially suitable for treating drug-sensitive and multidrug-resistant tuberculosis. Multiagent EBA studies can contribute to reducing the time needed to develop new antituberculosis regimens. The Global Alliance for TB Drug Development (TB Alliance).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.