Abstract
The aim of the present study was to identify modes of coordination in cross-country skiing from a dynamical systems perspective. Participants (N = 8) skied on a treadmill using classical techniques with varying steepness (i.e., 0°–7°). Coordination was evaluated in terms of the relative frequency and relative phase between upper arms and thighs. Results revealed that the limb movements were systematically attracted towards low integer frequency ratios (i.e., 1:1 and 2:1) and in-phase (φ ≈ 0°) and anti-phase relationships (φ ≈ 180°). The increase in steepness produced shifts between the attractive modes of limb movements and a loss of stability was observed during transitions. These results suggest that principles of coordination between limbs in cross-country skiing are akin to those of non-linear coupled oscillators, as documented for a broad range of motor activities. Yet, differences with such classical findings are discussed reflecting the specific biomechanical constraints of cross-country skiing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.