Abstract

Deregulated expression of tripartite motif-containing protein 32 (TRIM32, an E3 ubiquitin-protein ligase) contributes to various diseases. Here we report, using quantitative proteomics and biochemistry, that 14-3-3 proteins bind to phosphorylated TRIM32 and prevent TRIM32 autoubiquitylation and the formation of TRIM32-containing cytoplasmic bodies, which are potential autoregulatory mechanisms that can reduce the concentration of soluble free TRIM32. The 14-3-3-TRIM32 interaction is dependent on protein-kinase-A-catalyzed phosphorylation of TRIM32 at Ser651. We found that the inhibitory effect of 14-3-3 is, in part, a consequence of disrupting the propensity of TRIM32 to undergo higher-order self-association without affecting its dimerization. Consequently, dimerized TRIM32 bound to 14-3-3 was sequestered in a distinct cytoplasmic pool away from the microtubule network, whereas a TRIM32 mutant that cannot bind 14-3-3 underwent multimerization and was unavailable to facilitate cell growth. Our results reveal a novel connection between ubiquitylation and phosphorylation pathways, which could modulate a variety of cell events by stimulating the formation of the 14-3-3-TRIM32 signaling complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.