Abstract

By proteomic analysis, we found that 14-3-3ζ was one of the proteins co-immunoprecipitated with human κ-opioid receptor (hKOPR) from extracts of solubilized Neuro2A cells stably expressing FLAG-hKOPR (N2A-FLAG-hKOPR cells). 14-3-3 proteins are a family of conserved regulatory molecules in eukaryotic cells, where they participate in signal transduction, metabolism, and membrane protein transport. 14-3-3ζ co-localized with the hKOPR in N2A cells. The hKOPR C-tail interacted with 14-3-3ζ in rat brain extracts and bound directly to purified 14-3-3ζ as demonstrated by pulldown techniques. 14-3-3ζ siRNA decreased expression of the hKOPR in N2A-FLAG-hKOPR cells and cultured primary cortical neurons of E19 rats by ~25% as determined by immunoblotting, ligand binding, and flow cytometry. The effect of 14-3-3ζ siRNA was reversed by overexpression of 14-3-3ζ. Expression of the 14-3-3 scavenger protein pGpLI-R18 also decreased hKOPR expression. 14-3-3ζ siRNA did not change expressions of the hDOPR and rMOPR in N2A cells. Pulse-chase study showed that 14-3-3ζ siRNA decreased the amount of mature hKOPR but did not change the rate of maturation or stability of hKOPR protein. Mutations of R354A/S358A in the putative 14-3-3 interaction motif (354)RQSTS(358) in the hKOPR C-tail reduced interaction of the hKOPR with 14-3-3ζ and abolished the effect of 14-3-3ζ knockdown on hKOPR expression. Mutation of the endoplasmic reticulum retention motif (359)RVR adjacent to the 14-3-3 interaction motif in the hKOPR C-tail decreased interaction of coatomer protein I (COPI) with the hKOPR and abolished 14-3-3ζ-mediated regulation of hKOPR expression. 14-3-3ζ knockdown increased association of COPI with the hKOPR. These results suggest that 14-3-3ζ promotes expression of the hKOPR by inhibiting COPI and RVR motif-mediated endoplasmic reticulum localization machinery.

Highlights

  • Regulation of export of 7TMRs is not well understood

  • We found that 14-3-3␨ was one of the proteins co-immunoprecipitated with human ␬-opioid receptor from extracts of solubilized Neuro2A cells stably expressing FLAG-human KOPR (hKOPR) (N2A-FLAG-hKOPR cells). 14-3-3 proteins are a family of conserved regulatory molecules in eukaryotic cells, where they participate in signal transduction, metabolism, and membrane protein transport. 14-3-3␨ co-localized with the hKOPR in N2A cells

  • Proteomic Analysis of Proteins Co-immunoprecipitated with the hKOPR—Fig. 1A shows staining of a representative SDSPAGE gel of proteins immunoprecipitated with anti-FLAG antibody from control N2A cells and N2A-FLAG-hKOPR cells

Read more

Summary

Background

Regulation of export of 7TMRs is not well understood. Results: 14-3-3␨ binds hKOPR C-tail and facilitates hKOPR export by inhibiting COPI- and RVR motif-mediated ER localization. Mutation of the endoplasmic reticulum retention motif 359RVR adjacent to the 14-3-3 interaction motif in the hKOPR C-tail decreased interaction of coatomer protein I (COPI) with the hKOPR and abolished 14-3-3␨-mediated regulation of hKOPR expression. Studies have shown that 7TMRs interact with many proteins in addition to G proteins These proteins directly participate in signaling of the receptor and act as part of a scaffolding complex to modulate receptor signaling or regulate receptor trafficking, localization, and pharmacological characteristics (for review, see Ref. 4).

The abbreviations used are
EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call