Abstract

Acute stress provokes lethal cardiac arrhythmias in the hereditary long QT syndrome. Here we provide a novel molecular mechanism linking beta-adrenergic signaling and altered human ether-a-go-go related gene (HERG) channel activity. Stress stimulates beta-adrenergic receptors, leading to cAMP elevations that can regulate HERG K+ channels both directly and via phosphorylation by cAMP-dependent protein kinase (PKA). We show that HERG associates with 14-3-3epsilon to potentiate cAMP/PKA effects upon HERG. The binding of 14-3-3 occurs simultaneously at the N- and C-termini of the HERG channel. 14-3-3 accelerates and enhances HERG activation, an effect that requires PKA phosphorylation of HERG and dimerization of 14-3-3. The interaction also stabilizes the lifetime of the PKA-phosphorylated state of the channel by shielding the phosphates from cellular phosphatases. The net result is a prolongation of the effect of adrenergic stimulation upon HERG activity. Thus, 14-3-3 interactions with HERG may provide a unique mechanism for plasticity in the control of membrane excitability and cardiac rhythm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.