Abstract

The α(1,3)-fucosyltransferases, types IV and VII (FUT4 and FUT7, respectively), are required for the synthesis of functional selectin-type leukocyte adhesion molecule ligands. The selectins and their ligands modulate leukocyte trafficking, and P-selectin and its ligand, P-selectin glycoprotein ligand-1, can modulate hemostasis and thrombosis. Regulation of thrombosis by FUT4 and/or FUT7 activity was examined in mouse models of carotid artery thrombosis and collagen/epinephrine-induced thromboembolism. Mice lacking both FUT4 and FUT7 (Fut(-/-) mice) had a shorter time to occlusive thrombus formation in the injured carotid artery and a higher mortality due to collagen/epinephrine-induced pulmonary thromboemboli. Mice lacking P-selectin or P-selectin glycoprotein ligand-1 did not have a prothrombotic phenotype. Whole blood platelet aggregation was enhanced, and plasma fibrinogen content, clot weight, and clot strength were increased in Fut(-/-) mice, and invitro clot lysis was reduced compared with wild type. Fut4(-/-), but not Fut7(-/-), mice had increased pulmonary thromboembolism-induced mortality and decreased thromboemboli dissolution invivo. These data show that FUT4 and FUT7 activity regulates thrombosis in a P-selectin- and P-selectin glycoprotein ligand-1-independent manner and suggest that FUT4 activity is important for thrombolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call