Abstract

A general synthetic route to 2-alkyl- and 2,2-dialkyl-1,3-dioxan-5-ones, using tris(hydroxymethyl)-nitromethane as the starting material, is described. Deprotonation of these compounds was studied. It was established that these dioxanones could be deprotonated with LDA; however, the reduction of the carbonyl group via a hydride transfer from LDA, giving the corresponding dioxanols, often competed with deprotonation. The reduction could be minimized by using Corey's internal quench procedure to form silyl enol ethers and was less pronounced in 2,2-dialkyldioxanones (ketals) than in 2-alkyldioxanones (acetals). Self-aldol products were observed when dioxanone lithium enolates were quenched with H2O. Addition reactions of lithium enolates of dioxanones to aldehydes were threo-selective as predicted by the Zimmerman–Traxler model. Dioxanones having two different alkyl groups at the 2-position were deprotonated enantioselectively by chiral lithium amide bases with enantiomeric excess (ee) of up to 70%. Keywords: 1,3-dioxan-5-ones, enantioselective deprotonation, chiral lithium amides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.