Abstract

A complete set of NMR coupling constants (1JC-H, 2JC-H, 3JC-H, and 3JH-H) were calculated for the eight stereoisomers of quinic acid, at the B3LYP/6-311G(d,p)/PCM(methanol) level of theory. The Fermi contact term of the coupling constants was computed with a modified, uncontracted, version of the 6-311G(d,p) basis set, with additional tight polarization functions. 1H and 13C NMR chemical shifts were determined at the same level using the gauge-invariant atomic orbital (GIAO) method. The magnitude of the spin-spin coupling constants was found to be affected by the orientation (axial or equatorial) of the coupling proton and the orientation of the hydroxy group on the coupling carbon, whereas the chemical shifts depend on the presence or absence of electron-withdrawing hydroxy groups attached to the carbon atoms involved.Graphical Nuclear magnetic resonance coupling constants, computed with density functional theory, can be used to differentiate and identify the different stereoisomers of quinic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call