Abstract

Stable isotope 13C-labelled phenylalanine breath test has been applied to enable the quantitative evaluation of hepatic functional reserve, but the mechanism underlying the changes in function has not been resolved. This study evaluated the correlation between expression of the mRNA of key enzymes mediating phenylalanine metabolism and the metabolism of L-[1-13C] phenylalanine (13C-phe) assessed by the excretion of 13C-CO2 in the breath of rats with, and without, chronic hepatic injury induced by administration of carbon tetrachloride (CCl4). Male Sprague-Dawley (SD) rats (n = 29) were given subcutaneous injections of CCl4 to induce chronic hepatic injury. L-[1-13C] phenylalanine breath tests (PheBT) were then applied to the rats to assess hepatic function. Expression of phenylalanine hydroxylase (PHH) and tyrosine transaminase (TYT) mRNA in liver was detected by real-time fluorescence quantification RT-PCR, using TaqMan as the probe. It was then determined whether the PheBT results correlated with PHH and/or TYT mRNA expression. In addition, immunohistochemical labelling was used to visualize PHH protein expression in the control and injured liver tissue. There were significant decreases in PheBT and PHH mRNA expression in the cirrhotic rats relative to the uninjured controls and these two measures of liver function were correlated. However, TYT mRNA expression was not changed by CCl4-induced liver injury. The immunohistochemical analysis revealed that PHH protein was expressed predominantly in the cytoplasm of liver cells. The results of the PheBT were consistent with the changes in PHH gene expression following liver injury. The present findings indicate that decreased expression of the rate-limiting enzyme PHH, but not of TYT, might underlie the functional deficits detected as decreased PheBT. The 13C excretion rate constant per mass liver (PheBT-k/LW) was the most sensitive index that could be used to evaluate the PHH mRNA expression in the liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.