Abstract

Two new pulse sequences are presented for the recording of 2D13C-HSQC and 3D13C-NOESY-HSQC experiments, containing two consecutive carbon evolution periods. The two periods are separated by az-filter which creates a clean CxHz-quantum state for evolution in the second period. Each period is incremented (in anon-constant-time fashion) only to the extent that the defocusing of carbon inphase magnetization throughJ-coupling with neighboring carbons remains insignificant. Therefore,13C homonuclearJ-couplings are rendered ineffective, reducing the loss of signal and peak splitting commonly associated with long13C evolution times. The two periods are incremented according to a special acquisition protocol employing a13C–13C gradient echo to yield a data set analogous to one obtained by evolution over the added duration of both periods. The spectra recorded with the new technique on uniformly13C-labeled proteins at twice the evolution time of the standard13C-HSQC experiment display a nearly twofold enhancement of resolution in the carbon domain, while maintaining a good sensitivity even in the case of large proteins. Applied to the IIAManprotein ofE. coli(31 kDa), the13C-HSQC experiment recorded with a carbon evolution time of 2 × 8 ms showed a 36% decrease in linewidths compared to the standard13C-HSQC experiment, and theS/Nratio of representative cross-peaks was reduced to 40%. This reduction reflects mostly the typical loss of intensity observed when recording with an increased resolution. The13C-NOESY-HSQC experiment derived from the13C-HSQC experiment yielded additional NOE restraints between resonances which previously had been unresolved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.