Abstract
The fermentation of 13C-labeled ethanol and acetate into butyrate and caproate by Clostridium kluyveri has been studied by using 13C NMR. The pathway involves the conversion of both ethanol and acetate into acetyl coenzymes A, two of which condense to form CoA-linked precursors of butyrate. If butyryl-CoA is involved in the condensation, caproate is the ultimate product. ATP is produced from acetyl-CoA via the reactions catalyzed by phosphotransacetylase and acetate kinase with acetate, a required carbon source, as a co-product. In spectra of whole cells incubated with the labeled carbon sources, label from ethanol appears rapidly in acetate, which then reaches a lower, steady-state concentration due to its re-entry into the pathway. The rapid initial production of acetate indicates equally rapid production of ATP. Label from acetate appears in ethanol only if ethanol is already present, indicating that this process is one of isotopic equilibration rather than net synthesis of ethanol from acetate. The ratio of butyrate to caproate produced depends strongly on the initial ratio of ethanol to acetate in the medium. The relative rates of utilization of ethanol and acetate vary as the fermentation proceeds. 13C-13C coupling in the butyrate and caproate produced from [1-13C]ethanol and [2-13C]acetate can be used to determine if the acetyl-CoA molecules arising from ethanol and acetate enter the same pool or if they remain separated. The data are consistent with random mixing of the acetyl-CoA produced from the two carbon sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.