Abstract

The 13C NMR chemical shift of sp2 carbon atoms in acyclic alkenes was estimated with multilayer feedforward artificial neural networks (ANNs) and multilinear regression (MLR), using as structural descriptors a vector made of 12 components encoding the environment of the resonating carbon atom. The neural network quantitative model provides better results than the MLR model calibrated with the same data. The predictive ability of both the ANN and MLR models was tested by the leave-20%-out (L20%O) cross-validation method, demonstrating the superior performance of the neural model. The number of neurons in the hidden layer was varied between 2 and 7, and three activation functions were tested in the neural model: the hyperbolic tangent or a bell-shaped function for the hidden layer and a linear or a hyperbolic tangent function for the output layer. All four combinations of activation functions give close results in the calibration of the ANN model, while for the prediction a linear output function performs ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.