Abstract

Perfluorooctanoic acid (PFOA) is well known to break glucose homeostasis. However, the effects of PFOA on glucose metabolism are difficult to be evaluated because related metabolites may be synthesized from other nutritional substrates. Here, the relative contribution of glucose to metabolites (e.g., pyruvate and citrate) in the PFOA-treated human liver cells (HepG2) was determined using the 13C isotope-based metabolic flux analysis (MFA), i.e., pathway activities. The relative percentage of [U-13C6] glucose-derived pyruvate in cells exposed to PFOA was not significantly different from that in the controls, indicating that the metabolic pattern of glycolysis was not substantially changed by PFOA. The pathway activity of [U-13C6] glucose-driven tricarboxylic acid (TCA) cycle was dramatically inhibited by PFOA. Consequently, mitochondrial respiratory function was phenotypically impaired by PFOA, as observed from the decreasing basal oxygen consumption rate (OCR), ATP-linked OCR and spare respiratory capacity. This study suggests that PFOA may cause the abnormal glucose metabolism via altering the metabolic pattern of TCA cycle instead of glycolysis. The MFA is strongly recommended as a promising and robust tool to address the toxicity mechanisms of contaminants associated with glucose metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.