Abstract

The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1omega5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating (13)C enrichment of 16:1omega5 and compared it with (13)C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [(13)C]glucose. The (13)C enrichment of neutral lipid fatty acid 16:1omega5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for (13)C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1omega5 than for the root specific neutral lipid fatty acid 18:2omega6,9. We labeled plant assimilates by using (13)CO(2) in whole-plant experiments. The extraradical mycelium often was more enriched for (13)C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between (13)C enrichment in neutral lipid fatty acid 16:1omega5 and total (13)C in extraradical mycelia in different systems (r(2) = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the (13)C enrichment of 16:1omega5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.