Abstract

The 13C MAS solid state NMR spectra of four sulphonamide derivatives of 1,2,4-benzothiadiazine-1,1-dioxides, commonly known as thiazides, were recorded and the chemical shifts and chemical shift anisotropy (CSA) were measured. Analysis of the experimental 13C shielding parameters was supported by DFT theoretical calculations carried out within the gauge-including atomic orbital (GIAO), semiempirical Typed Neglect of Differential Overlap (TNDO/2) approach and by the spectra estimations performed by ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR. It was found that the chemical shifts obtained with ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR were insensitive to the substitution effects, whereas the semiempirical TNDO/2 and density functional theory (DFT) B3LYP/6-311+G(2d,p) methods allowed estimation of the influence of substituents on the chemical shielding and consequently, the chemical shift. The influence of the substituents at C3 position of the ring on the chemical shifts was analysed on the basis of the experimental data and results of the DFT calculations. The values of the chemical shifts and the low values of the anisotropy parameter for the C3 atom in HCTZ, TCTZ and ATZ, strongly indicated that three thiazides HCTZ, TCTZ and ATZ occurred in the form of HCTZ type with the C3 carbon atom participating in a single bond. The following ordering of the substituents according to the increasing electron accepting properties was found: –H<–CH 2SCH 2CHCH 2<–CHCl 2. A detailed analysis of the inductive and coupling effects was made on the basis of 13C chemical shifts and chemical shielding tensor asymmetry parameters on the C3 and C6 carbon atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.