Abstract

13C- and 57Fe-NMR spectra of several carbon monoxide hemoprotein models with varying polar and steric effects of the distal organic superstructure, constraints of the proximal side, and solvent polarity are reported. The 13C shieldings of heme models cover a 4.0 ppm range that is extended to 7.0 ppm when several hemoglobin CO and myoglobin CO species at different pHs are included. Both heme models and heme proteins obey a similar excellent linear delta(13C) versus nu(C-O) relationship that is primarily due to modulation of pi backbonding from Fe d pi to the CO pi* orbital by the distal pocket polar interactions. There is no direct correlation between delta(13C) and Fe-C-O geometry. The poor monotonic relation between delta(13C) and nu(Fe-C) indicates that the iron-carbon pi bonding is not a primary factor influencing delta(13C) and delta(57Fe). The delta(57Fe) was found to be extremely sensitive to deformation of the porphyrin geometry, and increased shielding by more than 600 ppm with increased ruffling was observed for various heme models of known X-ray structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.