Abstract

The radionuclide cesium-137 (137Cs) is produced exclusively by anthropogenic processes and primarily by nuclear explosions. This study determined the reference inventory that is 137Cs associated with the element's original input, and utilized the levels of activity of this radionuclide previously measured in five sediment profiles collected from Admiralty Bay, Antarctica, to investigate the mobility of this element in the environment. 137Cs has a half-life of 30years. Because of this, it is environmentally persistent and has been shown to accumulate in marine organisms. The mean reference inventory of this radionuclide in Admiralty Bay sediments, determined using high resolution gamma ray spectrometry, was 20.23±8.94Bqm−2, and within the ambient 137Cs activity range. A model of 137Cs diffusion–convection was applied to data collected from 1cm intervals in sediment cores with the aim of providing insights with respect to this element's behavior in sediments. Model results showed a significant correlation between measured and modeled values using the concentrations of 137Cs, and estimated input into the system from the global fallout of past nuclear tests and expected values based on local sedimentation rates. Results highlight the importance of accounting for the vertical diffusion of 137Cs in marine sediments when used as a tracer for environmental processes and for assessing potential bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call