Abstract

A quantitative analysis of 137Cs bioavailability in forest soils in the long term after the Chernobyl NPP accident based on a 3-year (1996–1998) investigation is presented. Five forest sites with different trees, composition and properties of soil were studied to identify factors determining radiocaesium transfer to different understory species. The following parameters were investigated: 137Cs activity concentrations and its speciation in various horizons of forest soil, accumulation of this radionuclide by different species of understory vegetation and distribution of root biomass in the soil profile. It has been shown that one decade after the deposition maximum 137Cs activity in soil of the experimental sites considered is located in different soil layers dependent on moisture regime, characteristics of litter and soil properties. A linear dependence between aggregated transfer factors for different species and groups of species of understory vegetation and exchangeable and available fractions of radiocaesium in soil was found. The vertical distribution of 137Cs activity, percentage of exchangeable radiocaesium in each horizon of litter and soil, as well as distribution of root systems (mycelia) over the soil profile are key factors governing variations in the availability of 137Cs for transfer to all forest understory components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call