Abstract

In order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity. Indeed, a pyrrolidinylmethyl derivative 10c was a potent Cdc7 inhibitor (IC50 = 0.70 nM) with high selectivity (Cdk2/Cdc7 ≥ 14,000, ROCK1/Cdc7 = 200). It should be noted that 10c exhibited significant time-dependent Cdc7 inhibition with slow dissociation kinetics, cellular pharmacodynamic (PD) effects, and COLO205 growth inhibition. Additionally, molecular basis of high kinase selectivity of 10c is discussed by using the protein structures of Cdc7 and Cdk2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call