Abstract
This paper presents a 1.3 kW resonant power amplifier using a Gallium Nitride (GaN) device at 13.56 MHz for wireless power transfer (WPT). The power amplifier driving the power transmitting coils is based on a Class Φ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> inverter, a single switch topology with low switch voltage stress and fast transient response. This implementation utilizes a recently available GaN device in a low inductance package that is compatible with operation in the 10's of MHz switching frequency. These power GaN switching devices have low gate resistance RG and low capacitance C <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">GS</inf> which greatly reduces the power requirements of the gate drive circuitry. This paper shows experimental measurements of the inverter in a WPT application and characterization of the system performance over various distances and operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.