Abstract

Purpose: Polyethylenimine (PEI) has been widely used as a versatile template to develop multifunctional nanosystems for disease diagnosis and treatment. In this study, we manufactured iodine-131 (131I)-labeled PEI-entrapped gold nanoparticles (Au PENPs) as a novel nanoprobe for single-photon emission computed tomography/computed tomography (SPECT/CT) imaging and radionuclide therapy.Materials and methods: PEI was PEGylated and sequentially conjugated with Buthus martensii Karsch chlorotoxin (BmK CT, a tumor-specific ligand which can selectively bind to MMP2), 3-(4′-hydroxyphenyl)propionic acid-OSu (HPAO), and fluorescein isothiocyanate to form the multifunctional PEI template for entrapment of Au NPs. Then, the PEI surface was radiolabeled with 131I via HPAO to produce the novel nanoprobe (BmK CT-Au PENPs-131I).Results: The synthesized multifunctional Au PENPs before and after 131I radiolabeling were well-characterized as follows: structure, X-ray attenuation coefficient, colloid stability, cytocompatibility, and radiochemical stability in vitro. Furthermore, BmK CT-Au PENPs-131I were suitable for targeted SPECT/CT imaging and radionuclide therapy of tumor cells in vitro and in a xenograft tumor model in vivo.Conclusion: The developed multifunctional Au PENPs are a promising theranostic platform for targeted imaging and treatment of different MMP2-overexpressing tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.