Abstract

Age-specific dose coefficients are required to assess internal exposure to the general public. This study utilizes reference age-specific biokinetic models of iodine to estimate the total number of nuclear disintegrations ã(r S,τ) occurring in source regions (r S) during the commitment time (τ). Age-specific S values are estimated for 35 target regions due to 131I present in 22 r S using data from 10 paediatric reference computational phantoms (representing five ages for both sexes) published recently by the International Commission of Radiation Protection (ICRP). Monte Carlo transport simulations are performed in FLUKA code. The estimated ã(r S,τ) and S values are then used to compute the committed tissue equivalent dose HT(τ) for 27 radiosensitive tissues and dose coefficients e(τ) for all five ages due to inhalation and ingestion of 131I. The derived ã(r S,τ) values in the thyroid source are observed to increase with age due to the increased retention of iodine in the thyroid. S values are found to decrease with age, mainly due to an increase in target masses. Generally, HT(τ) values are observed to decrease with age, indicating the predominant behaviour of S values over ã(r S,τ). On average, ingestion dose coefficients are 63% higher than for inhalation in all ages. The maximum contribution to dose coefficients is from the thyroid, accounting for 96% in the case of newborns and 98%–99% for all other ages. Furthermore, the estimated e(τ) values for the reference population are observed to be lower than previously published reference values from the ICRP. The estimated S, HT(τ) and e(τ) values can be used to improve estimations of internal doses to organs/whole body for members of the public in cases of 131I exposure. The estimated dose coefficients can also be interpolated for other ages to accurately evaluate the doses received by the general public during 131I therapy or during a radiological emergency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.