Abstract

BackgroundFostemsavir (FTR) is an oral prodrug of the first-in-class attachment inhibitor temsavir (TMR) which is being evaluated in patients with multidrug resistant HIV-1 infection. In vitro studies indicated that TMR and its 2 major metabolites are inhibitors of organic cation transporters (OCT)1, OCT2, and multidrug and toxin extrusion transporters (MATEs). To assess the clinical relevance, of OCT and MATE inhibition, mechanistic static DDI prediction with calculated Imax,u/IC50 ratios was below the cut-off limits for a DDI flag based on FDA guidelines and above the cut-off limits for MATEs based on EMA guidelines.MethodsMetformin is a commonly used probe substrate for OCT1, OCT2 and MATEs. To predict the potential for a drug interaction between TMR and metformin, a physiologically based pharmacokinetic (PBPK) model for TMR was developed based on its physicochemical properties, in vitro and in vivo data. The model was verified and validated through comparison with clinical data. The TMR PBPK model accurately described AUC and Cmax within 30% of the observed data for single and repeat dose studies with or without food. The SimCYP models for metformin and ritonavir were qualified using literature data before applications of DDI prediction for TMRResultsTMR was simulated at steady state concentrations after repeated oral doses of FTR 600 mg twice daily which allowed assessment of the potential OCT1, OCT2, and MATEs inhibition by TMR and metabolites. No significant increase in metformin systemic exposure (AUC or Cmax) was predicted with FTR co-administration. In addition, a sensitivity analysis was conducted for either hepatic OCT1 Ki, or renal OCT2 and MATEs Ki values. The model output indicated that, a 10-fold more potent Ki value for TMR would be required to have a ~15% increase in metformin exposureConclusionBased on mechanistic static models and PBPK modeling and simulation, the OCT1/2 and MATEs inhibition potential of TMR and its metabolites on metformin pharmacokinetics is not clinically significant. No dose adjustment of metformin is necessary when co-administered with FTRDisclosuresXiusheng Miao, PhD, GlaxoSmithKline (Employee) Mindy Magee, Doctor of Pharmacy, GlaxoSmithKline (Employee, Shareholder) Peter D. Gorycki, BEChe, MSc, PhD, GSK (Employee, Shareholder) Katy P. Moore, PharmD, RPh, ViiV Healthcare (Employee)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call