Abstract

The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (ρ_l/ρ_g=554) conditions conditions by using our numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call