Abstract

The edge expansion of a graph is the minimum quotient of the number of edges in a cut and the size of the smaller one among the two node sets separated by the cut. Bounding the edge expansion from below is important for bounding the “mixing time” of a random walk on the graph from above. It has been conjectured by Mihail and Vazirani (see [9]) that the graph of every 0/1-polytope has edge expansion at least one. A proof of this (or even a weaker) conjecture would imply solutions of several long-standing open problems in the theory of randomized approximate counting. We present different techniques for bounding the edge expansion of a 0/1-polytope from below. By means of these tools we show that several classes of 0/1-polytopes indeed have graphs with edge expansion at least one. These classes include all 0/1-polytopes of dimension at most five, all simple 0/1-polytopes, all hypersimplices, all stable set polytopes, and all (perfect) matching polytopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.