Abstract

Medulloblastoma (MB) is a malignant tumor of the cerebellum that occurs in children and infants. Abnormal neuronal differentiation can lead to brain tumors, and topoisomerase IIβ (Top IIβ) plays an important role in neuronal differentiation. The aim of this study was to investigate the molecular mechanism of 13-cis retinoic acid (13-cis RA) promoting the expression of Top IIβ and inducing neuronal differentiation in human MB Daoy cells. The results showed that 13-cis RA inhibited the cell proliferation and induced cell cycle arrest in G0/G1 phase. The cells differentiated into a neuronal phenotype, with high expression of the neuronal marker microtubule-associated protein 2 (MAP2) and abundant Top IIβ, and obvious neurite growth. Chromatin immunoprecipitation (ChIP) assay showed that histone H3 lysine 27 tri-methylation (H3K27me3) modification in Top IIβ promoter decreased after 13-cis RA-induced cell differentiation, while jumonji domain-containing protein 3 (JMJD3) binding in Top IIβ promoter increased. These results suggest that H3K27me3 and JMJD3 can regulate the expression of Top IIβ gene, which is related to inducing neural differentiation. Our results provide new insights into understanding the regulatory mechanisms of Top IIβ during neuronal differentiation and imply the potential application of 13-cis RA in the clinical treatment of MB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.