Abstract
Understanding the tectonic mechanism generated by the earthquakes and faults is possible only if the preseismic, coseismic and postseismic crustal deformation related to the earthquakes is determined properly. By the analysis of continuous GPS (CGPS) coordinate time series, it is possible to estimate the crustal deformation. Besides, accelerometer records at strong motion stations (SMSs) may support the CGPS-based estimates. In this study, CGPS coordinate time series were analyzed in comparison with the accelerometer records for clarifying the coseismic deformation caused by the earthquake occurred in the surrounding of Lesvos fault located in the northern part of Karaburun within the active mechanism that controls the area where the earthquakes occurred during June 2017 on the offshore Karaburun. The activity of this fault continued throughout June 2017 until the time when the main shock (12th June 2017, Mw= 6.2) occurred. We analyzed CGPS coordinate time series of AYVL and CESM and DEUG stations to determine the coseismic deformation due to the offshore Karaburun-Lesvos Island earthquake using the empirical mode decomposition (EMD) method. Besides, the EMD method results were compared with the accelerometer records obtained from the SMSs close to the CGPS stations and CGPS-based results were found to be consistent with the accelerometer records. Additionally, the horizontal displacements were calculated by Coulomb 3.3 software using different focal plane solutions and compared with CGPS-based results. Consequently, it is suggested an integrated use of CGPS and strong motion accelerometer networks for the joint assessment of the crustal deformation and for the cost-effective use of existing observation networks as well as for the establishment of future observation networks at lower cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.