Abstract

The metal-organic framework MIL-53 exhibits a structural transition between two possible porous structures, so-called large-pore (lp) and narrow-pore (np) forms, depending on the temperature or when guest molecules are adsorbed. (129)Xe NMR has been used to study the lp --> np transition induced by the adsorption of xenon as revealed by the adsorption isotherms. The NMR spectra show that the two structures, characterized by two distinct lines, coexist for xenon pressures above 5 x 10(4) Pa at room temperature, but a complete transformation is achieved when the temperature is decreased. An original interpretation of the NMR results allowed us to quantify the rate of the structural transformation. In particular, at room temperature, we have shown that 28% of the channels remain open. Two possible interpretations of the hysteresis observed in the chemical shift variation versus xenon pressure are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call