Abstract

Here we present a Rb-^{129}Xe spin-exchange optical pumping polarizer capable of rapid generation of large volumes of highly polarized ^{129}Xe gas. Through modeling and measurements we maximize the ^{129}Xe nuclear spin polarization output to enable the generation of polarized ^{129}Xe gas imaging volumes (300 cm^{3}) every 5min within a clinical setting. Our model is verified by experiment to correctly predict the optimum Rb vapor density for maximum ^{129}Xe nuclear polarization for a flux 3.4 W/cm^{2} of circularly polarized Rb D_{1} photons incident on an 80cm long cylindrical optical cell. We measure a ^{129}Xe magnetization production efficiency of η_{pr}=1.8%, which approaches the photon efficiency limit η_{γ}=3.3% of this system and enables the polarization of 2.72×10^{22} ^{129}Xe spins per hour, corresponding to 1013 cm^{3} of 100% polarized ^{129}Xe at STP. This magnetization production rate is threefold higher than the highest previously published ^{129}Xe magnetization production rate and has enabled routine clinical lung magnetic resonance imaging (MRI) with hyperpolarized ^{129}Xe doses available on demand at run time, as well as high-SNR ^{129}Xe MRI of the human brain and kidneys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call