Abstract

Hepatocellular carcinoma (HCC) is one of the most deadly human cancers. Chronic hepatitis B virus (HBV) infection is one of the predominant risk factors associated with the development of HCC and complicates the treatment of HCC. In this study, we demonstrate that a HBV-positive HCC cell line HepG2.2.15, was more resistant to chemotherapy agents than its parental HBV-negative cell line HepG2. HBV-positive HCC cells exhibited defective Chk1 phosphorylation and increased chromosomal instability. CGK733, a small molecule inhibitor reportedly targeting the kinase activities of ATM and ATR, significantly enhanced taxol-induced cytotoxicity in HBV-positive HepG2.2.15 cells. The mechanism lies in CGK733 triggers the formation of multinucleated cells thus promotes the premature mitotic exit of taxol-induced mitotic-damaged cells through multinucleation and mitotic catastrophe in HBV-positive HepG2.2.15 cells. These results suggest that CGK733 could potentially reverse the taxol resistance in HBV-positive HCC cells and may suggest a novel strategy to treat HBV-infected HCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.