Abstract

Objective To investigate the effect of 1,25(OH)2D3 on high glucose induced podocyte injury and its signal transduction mechanism. Methods Differentiated mouse podocytes were exposed to normal glucose, high glucose, and different concentrations of 1,25(OH)2D3 or LY294002 (a selective PI3K inhibitor) for 24 h. PCR and immunofluorescent staining were used to detect nephrin, podocin, and desmin. Western blotting was used to detect protein expression of nephrin, podocin, desmin, PI3K, Akt and p-Akt. Results Compared with high glucose group, 1,25(OH)2D3 (100 nmol/L and 1000 nmol/L) significantly up-regulated the expression of podocin and nephrin in podocytes induced by high glucose (P<0.05). Meanwhile, 1,25(OH)2D3 (100 nmol/L) significantly reduced the expression of desmin (P<0.05). PI3K and p-Akt were obviously reduced in high glucose group. In the presence of 1,25(OH)2D3, the trends were reversed. However the above effects of 1,25(OH)2D3 were abolished when p-Akt was blocked by the PI3K inhibitor LY294002. Conclusions 1,25 (OH)2D3 can inhibit high glucose-induced podocyte injury through PI3K/p-Akt signaling pathway. Key words: Calcitriol; Podocyte; High glucose; PI3K/p-Akt signalling pathway

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call