Abstract

The effect of 125I-decay on cell lethality, and induction of chromosome and DNA damage, was studied in synchronous non-cycling, G1-phase CHO-cells. For this purpose a population of mitotic cells was allowed to divide and progress through S-phase in the presence of 125IdUrd. Cells were subsequently transferred to conditioned medium (C-med) obtained from plateau-phase cultures that allowed cells to divide and accumulate in G1-phase in a non-cycling state. To accumulate 125I-induced damage, cells were kept frozen at -80 degrees C. Freezing was carried out using a new method that optimally preserves cell integrity. After various times of cold storage, cells were thawed and assayed for survival, DNA and chromosome damage, either immediately or after various times in C-med. Neutral filter elution was used to assay repair of DNA double-strand breaks (dsbs), and premature chromosome condensation was used to assay repair of chromosome fragments and induction of ring chromosomes. The results indicate very little repair at the cell survival level (repair of PLD). At the DNA level an efficient repair of DNA dsbs was observed, with kinetics similar to those observed after exposure to X-rays. At the chromosome level a fast repair of prematurely condensed chromosome fragment was observed, with a concomitant increase in the number of ring chromosomes induced. The repair kinetics of chromosome fragments and DNA dsbs were very similar, suggesting that DNA dsbs may underlie chromosome fragmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.