Abstract

Background and objectivesDysregulation of the autophagy pathway has been suggested as an important mechanism in the pathogenesis of Parkinson’s disease (PD). Therefore, modulation of autophagy may be a novel strategy for the treatment of PD. Recently, an active form of vitamin D3 has been reported to have neuroprotective properties. Therefore, we investigated the protective, autophagy-modulating effects of 1,25-dyhydroxyvitamin D3 (calcitriol) in an in vitro model of Parkinson’s disease. MethodsAn in vitro model of Parkinson’s disease, the rotenone-induced neurotoxicity model in SH-SY5Y cells was adapted. We measured cell viability using an MTT assay, Annexin V/propidium iodide assay, and intracellular reactive oxygen species levels and analyzed autophagy-associated intracellular signaling proteins by Western blotting. ResultsRotenone treatment of SH-SY5Y cells reduced their viability. This treatment also increased reactive oxygen species levels and decreased levels of intracellular signaling proteins associated with cell survival; simultaneous exposure to calcitriol significantly reversed these effects. Additionally, calcitriol increased levels of autophagy markers, including LC3, beclin-1, and AMPK. Rotenone inhibited autophagy, as indicated by decreased beclin-1 levels and increased mTOR levels, and this effect was reversed by calcitriol treatment. DiscussionCalcitriol protects against rotenone-induced neurotoxicity in SH-SY5Y cells by enhancing autophagy signaling pathways such as those involving LC3 and beclin-1. These neuroprotective effects of calcitriol against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for its clinical use in the treatment of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call