Abstract

Excessive activation of nuclear transcription factor-κB (NF-κB) is involved in human airway smooth muscle cells (HASMCs) activities in asthma. We investigated the effects of 1,25 - dihydroxyvitamin D3 [1,25 - (OH) 2D3] on the NF- κB signaling pathway in passively sensitized HASMCs and the molecular mechanisms involved. HASMCs were treated with either healthy controls' serum, asthma patients' serum or pretreated with 1,25 - (OH) 2D3 prior to treatment with asthmatics' serum. At 1 h after serum treatment: electrophoretic mobility shift assay (EMSA) was used to detect NF-κB DNA binding activity; immunocytochemical staining was used to observe the nuclear translocation of NF-κB p65; Western blots were used for NF-κB p65, IκBα, and phospho-IκBα protein levels and the nuclear translocation of NF-κB p65; real-time quantitative PCR was used for NF-κB p65 and IκBα mRNA expressions; and actinomycin D treatment was used to determine IκBα mRNA stability. Our major findings were: (1) 1,25 - (OH) 2D3 significantly reduced asthma serum passively sensitized HASMCs NF-κB DNA binding activity and inhibited the nuclear translocation of NF-κB p65; (2) 1,25 - (OH) 2D3 increased the stability of IκBα mRNA with reduced IκBα phosphorylation in asthma serum passively sensitized HASMCs and significantly increased IκBα expression in these HASMCs. Inhibiting NF-κB signalling with 1,25 - dihydroxyvitamin D3 may be a therapeutic approach for controlling HASMC-related remodelling in asthma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.