Abstract

1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDRhigh) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDRlow and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH)2D3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH)2D3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH)2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH)2D3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH)2D3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.

Highlights

  • 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression

  • A 76-gene signature which classifies whether a non-small cell lung cancer (NSCLC) cell line has undergone epithelial mesenchymal transition (EMT) was recently described by Byers et al [23]

  • Upon examining the cell lines that fell within each group, we noted a possible association between EMT phenotype and 1,25(OH)2D3 responsiveness (Table 1)

Read more

Summary

Introduction

1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDRhigh) and are vitamin D-sensitive. Those with K-ras mutations are VDRlow and vitamin. 1,25(OH)2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH)2D3 opposes EMT in NSCLC cells. More recent studies demonstrate that 1,25(OH)2D3 inhibits a number of additional processes critical to tumor survival and progression including angiogenesis [7,8,9], telomerase activation [10,11], and the epithelial-mesenchymal transition (EMT) [12,13,14,15]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call