Abstract

All-optical ultrasound probes that contain a photoacoustically-based ultrasound generator paired with a photonic acoustic sensor provide a promising imaging modality for diagnostic and MRI-compatible applications. Here, we demonstrate the fabrication of a fiber-based all-optical ultrasound probe and its applications in pulse-echo ultrasound imaging. The ultrasound generator is fabricated on a 125 μm multimode optical fiber by forming a light-absorbing multiwalled carbon nanotube (MWCNT)-polydimethylsiloxane (PDMS) composite coating on its distal end. A peak-to-peak acoustic pressure of 0.95 MPa was achieved with laser irradiation at 2.46 μJ by chemically functionalizing the fiber surface to enable a strong adsorption. Ultrasound reception was performed by a fiber-laser ultrasound sensor that translates ultrasound pressure into differential lasing-frequency changes. By linearly scanning the probe, ex vivo two- and three-dimensional imaging of a segment of swine trachea was demonstrated by detecting the echo ultrasound signals and reconstructing the acoustic scatterers. The probe presents axial and lateral resolutions at 150 and 62 μm, respectively. The small-sized, side-looking all-fiber ultrasound probe presents a promising approach for assembling an interventional endoscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call