Abstract

Recently, increasing numbers of very small-sized vehicles like a personal mobility have been developed. As the mass of such small-sized vehicle is often comparable to that of their drivers, the coupling behavior between them is increasing in comparison with traditional vehicle types. Therefore, when developing small-sized vehicles, it is necessary to give ample consideration to the dynamics of the human body riding inside them. In this research, a model of a human body inside a small-sized personal vehicle is proposed. However, attempting to implement a whole body model would necessitate dealing with multiple degrees of freedom and give rise to distracting phenomena. Furthermore, the influences of human motion are uncertain and difficult to set into parameters. Accordingly, in this research, the human model is limited to the head and trunk of a human body riding inside a vehicle, and numerical simulations were used to investigate conditions that exist when lateral acceleration is applied. Then the parameters of numerical simulation is identified by Genetic Algorithm (GA). Additionally, the effect of motion control model is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call