Abstract

We present radio frequency (RF) and thermal characterization of a compact 12-way power combiner designed for operation at 352 MHz at a power level of 100 kW with 5% duty factor. The combiner is based on a reentrant cavity with 12 input doorknob couplers and one output coupler that is integrated with the post of the cavity and forms doorknob type geometry. We introduce convenient design formulas that allow easy identification of a suitable parameter space, which is then refined with numerical simulations. Low-power RF measurements of a prototype show 0.2% insertion loss and a relative rms amplitude imbalance between the ports of 0.1% and phase imbalance of 0.036° rms. The matching is better than −25 dB over a 3-dB bandwidth around the design frequency. We also tested the combiner up to 200 kW and found the RF loss to be comparable to that of the low-power measurement. In a long test run at 100 kW with 5% duty factor, the combiner temperature stabilized at 10° above ambient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call