Abstract
A class of so-called POP ligands (Xanthos, NiXantphos, DPEphos) are of a great interest to the coordination chemistry due to their wide P-M-P bite angles and ability to show either κ2- or κ3-binding modes. Such κ2–κ3-rearrangement is valuable for catalytic application and internal stabilization of intermediates. To widen the scope of ruthenium-based catalysts for Atom Transfer Radical Polymerization (ATRP) two new approaches to the synthesis of closo-ruthenacarboranes with aforementioned POP ligands were developed and six new 17-e (3,3-(POP)-3-Cl-closo-3,1,2-RuC2B9H11; 2, 4, 7) and 18-e (3,3-(POP)-3-NCCH3-closo-3,1,2-RuC2B9H11; 3, 5, 8) clusters were synthesized and characterized by means of NMR or ESR spectroscopy, MALDI mass-spectrometry and single crystal X-ray diffraction studies. The unique 18-e complex of Ru(II) with dioxygen ligand 3,3-(DPEphos)-3-(η2-O2)-closo-3,1,2-RuC2B9H11 (9) was isolated and characterized by X-ray diffraction. It was shown that aforementioned POP ligands coordinate to ruthenium by two phosphorus atoms in a κ2-fashion. The performed electrochemical studies have shown reversible Ru(II)-Ru(III) transition making the complexes suitable for application in catalysis of polymerization. The test experiments on methyl methacrylate (MMA) polymerization indicate the proceeding of the process in according with an ATRP mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.