Abstract
Protein citrullination is a key post-translational modification (PTM) that leads to the loss of positive charge on arginine and consequent protein structural and functional changes. Though it has been indicated to play critical roles in various physiological and pathological processes, effective analytical tools are largely limited due to a few challenges such as the small mass shift induced by this PTM and its low-abundance nature. Recently, we developed a biotin thiol tag, which enabled large-scale profiling of protein citrullination from complex biological samples via mass spectrometry. However, a high-throughput quantitative approach is still in great need to further improve the understanding of this PTM. In this study, we report an efficient pipeline using our custom-developed N,N-dimethyl leucine isobaric tags to achieve a multiplexed quantitative analysis of citrullination from up to 12 samples for the first time. We then apply this strategy to investigating citrullination alterations in response to DNA damage stress using human cell lines. We unveil important biological functions regulated by protein citrullination and observe hypercitrullination on RNA-binding proteins and DNA repair proteins, respectively. Our results reveal the involvement of citrullination in DNA damage pathways and may provide new insights into DNA-damage-related disease pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.