Abstract

The study was conducted to determine the effects of parity/lactation and the timing of gonadotropin-releasing hormone (GnRH) treatment on the efficacy of a non-steroidal aromatase inhibitor-based synchronization protocol in cattle. Results from previous studies confirmed drug-release from a new letrozole-impregnated intravaginal silicone device, which was used in the present study. Hereford-cross cows with suckling calves (41 to 65 days postpartum; n = 30) and sexually mature heifers (n = 30), at random stages of the oestrous cycle, were given a letrozole intravaginal device for 4 days followed by a luteolytic dose of prostaglandin F2α (PGF2α). Following PGF2α treatment, animals were assigned randomly to 3 groups and given GnRH (100 μg of gonadorelin) intramuscularly at 48 or 60 h, or no GnRH (n = 10 cows and 10 heifers per group). Ovaries were examined by transrectal ultrasonography every 8 h starting at the time of PGF2α treatment to record follicle diameter and ovulation. After ovulation, ultrasonography was done every 24 h until Day 10 (Day 0 = ovulation) to assess the corpus luteum (CL) diameter profile. The timing of ovulation, diameter of the preovulatory follicle, synchrony of ovulation, and Day-7 CL diameter were compared using two-way ANOVA, and CL diameter profiles were compared by two-way ANOVA for repeated measures. There was no treatment × parity/lactation status interaction for any endpoint. The ovulation rate within 96 h of PGF2α treatment was not different between heifers and cows (24/30 v. 27/30; P = 0.14) or treatment group (18/20, 18/20, and 15/20 in the 48 h, 60 h, and no GnRH groups, respectively; P = 0.18). The interval from PGF2α treatment to ovulation was not influenced by parity/lactation (83.1 ± 2.4 h) but was shortest in the GnRH 48 h group (mean ± SEM; 74.2 ± 2.7 h, 85.6 ± 4.8 and 89.2 ± 4.1, respectively; P < 0.05). Similarly, the variation in the interval to ovulation (mean ± s.e.M of residuals) was not influenced by parity/lactation (16.0 ± 2.0 h), but was lower in the GnRH groups than the no-GnRH group (P < 0.01), and tended to be lower (P = 0.1) in the GnRH 48-h v. 60-h group (10.0 ± 2.8, 14.2 ± 3.5, and 24.1 ± 3.1 h, respectively). The maximum diameter of the ovulatory follicle was larger for cows than heifers (17.0 ± 0.4 v. 15.1 ± 0.5; P < 0.01), and was smaller in the GnRH groups than the no-GnRH group (15.3 ± 0.3, 15.4 ± 0.7 and 17.3 ± 0.5 mm, respectively; P < 0.01). The diameter of the CL on Day 7 was larger for cows than heifers (22.3 ± 0.8 v. 20.2 ± 0.6 mm; P < 0.05) and was influenced by treatment (21.9 ± 0.5, 19.5 ± 0.7, 22.3 ± 1.1 mm, respectively; P = 0.05). A tendency for a treatment effect on CL diameter profile (P = 0.1) was attributed to a smaller profile in the GnRH 60-h group. In conclusion, GnRH treatment 48 h after PGF2α treatment increased synchrony of ovulation without adverse effects on ovulating follicle diameter or resulting CL growth, and may be incorporated into a novel steroid-free oestrous synchronization protocol for use in beef heifers and lactating cows. Research was supported by the Alberta Livestock and Meat Agency and Vencofarma, Brazil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.