Abstract

BackgroundPrenatal growth restriction and low birth weight have been linked to long-term alterations of health, presumably via adaptive modifications of the epigenome. Recent studies indicate a plasticity of the 11p15 epigenotype in response to environmental changes during early stages of human development.Study designWe analyzed methylation levels at different 11p15 loci in 20 growth-discordant monozygotic twin pairs. Intrauterine development was discordant due to severe twin-to-twin transfusion syndrome (TTTS), which was treated by fetoscopic laser coagulation of communicating vessels before 25 weeks of gestation. Methylation levels at age 4 were determined in blood and buccal cell-derived DNA by the single nucleotide primer extension reaction ion pair reverse-phase high performance liquid chromatography (SNuPE IP RP HPLC) assay. Methylation at LINE-1 repeats was analyzed as an estimate of global methylation.ResultsIn general, variance of locus-specific methylation levels appeared to be higher in buccal cell- as compared to blood cell-derived DNA samples. Paired analyses within the twin pairs revealed significant differences at only one CpG site (IGF2 dmr0 SN3 (blood), +1.9% in donors; P = 0.013). When plotting the twin pair-discordance in birth weight against the degree of discordance in site-specific methylation at age 4, only a few CpGs were found to interact (one CpG site each at IGF2dmr0 in blood/saliva DNA, one CpG at LINE-1 repeats in saliva DNA), with 26 to 36% of the intra-twin pair divergence at these sites explained by prenatal growth discordance. However, across the entire cohort of 40 children, site-specific methylation did not correlate with SD-scores for weight or length at birth. Insulin-like growth factor-II serum concentrations showed significant within-twin pair correlations at birth (R = 0.57) and at age 4 (R = 0.79), but did not differ between donors and recipients. They also did not correlate with the analyzed 11p15 methylation parameters.ConclusionIn a cohort of 20 growth-discordant monozygotic twin pairs, severe alteration in placental blood supply due to TTTS appears to leave only weak, if any, epigenetic marks at the analyzed CpG sites at 11p15.

Highlights

  • Prenatal growth restriction and low birth weight have been linked to long-term alterations of health, presumably via adaptive modifications of the epigenome

  • When plotting the twin pair-discordance in birth weight against the degree of discordance in site-specific methylation at age 4, only a few CpGs were found to interact, with 26 to 36% of the intra-twin pair divergence at these sites explained by prenatal growth discordance

  • insulin-like growth factor (IGF)-II cord blood concentrations were not different between donors and recipients (Table 1). They did not correlate with SD scores for weight or length at birth, and intra-twin pair differences in cord blood IGF-II levels were not related to the degree of discordance in birth weight or birth length standard deviation score (SDS)

Read more

Summary

Introduction

Prenatal growth restriction and low birth weight have been linked to long-term alterations of health, presumably via adaptive modifications of the epigenome. The 11p15 chromosome region harbors a set of imprinted genes involved in the expression of insulin-like growth factor (IGF)-II and fetal growth. Gene expression at this locus is controlled by differentially methylated regions (dmrs), and disturbances of these control elements resulting from either genetic or epigenetic mutations are known to cause fetal growth disorders such as BeckwithWiedemann syndrome (BWS) or Silver-Russell syndrome (SRS) [6]. Heijmans and colleagues [9] reported on persistent epigenetic differences at the 11p15 locus among adults six decades after periconceptional exposure to nutrient restriction during the Dutch famine in the winter of 1944 to 1945, and subsequent studies revealed folic acid supply before conception and during pregnancy to be associated with the methylation pattern at the 11p15 region in infants [10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.