Abstract

Background and purposeLoss of salivary gland function is a distressing side-effect of radiotherapy (RT) for head and neck cancer. The aim of this study was to develop a positron emission tomography (PET) method for measuring regional salivary gland function in the major salivary glands irradiated during RT. Patients and methodsEight head and neck cancer patients were included; two were examined before RT and six after parotid sparing RT. Patients were examined by dynamic 11C-methionine PET of the major salivary glands and parotid gland salivary flow measurements. PET data were analysed using a kinetic model of salivary gland 11C-methionine metabolism, in which salivary gland function was quantified by the net metabolic clearance of 11C-methionine, K. Functional voxel-wise images of K were calculated and matched with the CT-dose-plan for comparing regional salivary gland function with the regional radiation dose. ResultsParotid gland K correlated positively with parotid gland salivary flow, indicating that K can be used as an index of salivary gland function. K of parotid and submandibular glands was reduced dependent on the median radiation dose. In one patient, receiving a heterogeneous radiation dose to the parotid glands, regional salivary gland function was inversely correlated to the regional radiation dose. ConclusionsSalivary gland function can be measured by dynamic 11C-methionine PET. The net metabolic clearance of 11C-methionine of salivary glands was reduced dependent on the radiation dose. Dynamic 11C-methionine PET offers a method for studying the individual response of the major salivary glands to irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.