Abstract

Serpentinites form by hydration of mantle peridotite and constitute the largest potential reservoir of fluid-mobile elements entering subduction zones. Isotope ratios of one such element, boron, distinguish fluid contributions from crustal versus serpentinite sources. Despite 85% of boron hosted within abyssal peridotite being lost at the onset of subduction at the lizardite-to-antigorite transition, a sufficient cargo of boron to account for the composition of island arc magma is retained (c. 7μgg−1, with a δ11B of +22‰) until the down-going slab reaches the antigorite-out isograd. At this point a 11B-rich fluid, capable of providing the distinctive δ11B signature of island arc basalts, is released. Beyond the uniquely preserved antigorite-out isograd in serpentinites from Cerro del Almirez, Betic Cordillera, Spain, the prograde lithologies (antigorite–chlorite–orthopyroxene–olivine serpentinite, granofels-texture chlorite-harzburgite and spinifex-texture chlorite-harzburgite) have very different boron isotope signatures (δ11B=−3 to +6‰), but with no significant difference in boron concentration compared to the antigorite-serpentinite on the low P–T side of the isograd. 11B-rich fluid, which at least partly equilibrated with pelagic sediments, is implicated in the composition of these prograde lithologies, which dehydrated under open-system conditions. Serpentinite-hosted boron lost during the early stages of dehydration is readily incorporated into forearc peridotite. This, in turn, may be dragged to sub-arc depths as a result of subduction erosion and incorporated in a mélange comprising forearc serpentinite, altered oceanic crust and pelagic sediment. At the antigorite-out isograd it dehydrates, thus potentially providing an additional source of 11B-rich fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.