Abstract
We report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel–Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.