Abstract
There is a series of publications which have considered inequalities of Markov–Bernstein–Nikolskii type for algebraic polynomials with the Jacobi weight (see [N.K. Bari, A generalization of the Bernstein and Markov inequalities, Izv. Akad. Nauk SSSR Math. Ser. 18 (2) (1954) 159–176; B.D. Bojanov, An extension of the Markov inequality, J. Approx. Theory 35 (1982) 181–190; P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995; I.K. Daugavet, S.Z. Rafalson, Some inequalities of Markov–Nikolskii type for algebraic polynomials, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1 (1972) 15–25; A. Guessab, G.V. Milovanovic, Weighted L2-analogues of Bernstein's inequality and classical orthogonal polynomials, J. Math. Anal. Appl. 182 (1994) 244–249; I.I. Ibragimov, Some inequalities for algebraic polynomials, in: V.I. Smirnov (Ed.), Fizmatgiz, 1961, Research on Modern Problems of Constructive Functions Theory; G.K. Lebed, Inequalities for polynomials and their derivatives, Dokl. Akad. Nauk SSSR 117 (4) (1957) 570–572; G.I. Natanson, To one theorem of Lozinski, Dokl. Akad. Nauk SSSR 117 (1) (1957) 32–35; M.K. Potapov, Some inequalities for polynomials and their derivatives, Vestnik Moskov. Univ. Ser. Mat. Mekh. 2 (1960); E. Schmidt, Über die nebst ihren Ableitungen orthogonalen Polynomsysteme und das zugehörige Extremum, Math. Ann. 119 (1944) 165–209; P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica 2 (25) (1960) 373–378]). In this paper we find an inequality of the same type for algebraic polynomials on (0,∞) with the Laguerre weight function e-xxα (α>-1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Vacuum
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.