Abstract

AbstractThin film solar cells on semitransparent substrates are attracting much attention due to new application scenarios including building‐integrated photovoltaics (BIPV). Environmentally‐benign element constituted and highly stable kesterite Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells are ideal candidates for such applications. However, the efficiency of kesterite solar cells on semitransparent substrates is far behind that on opaque Mo‐based substrates. Here, fabrication of CZTSSe solar cells on fluorine‐doped tin oxide (FTO) substrates from molecular solution and how step‐by‐step absorber engineering improves device performance is reported. A power conversion efficiency of 7.02% is obtained when the absorber is fabricated on bare FTO, which is improved to 9.56% after adding a MoO3 interfacial layer. Investigations show the enhancement originates from the transformation of MoO3 to MoSe2 during film selenization which initiates crystallization at the back contact and at the same time prevents oversize grains at the absorber surface. Na‐doping and Ag alloying further facilitate grain growth and mitigate band tailing, resulting in a certified effective area efficiency of 11.43% with all device parameters comparable to that on an Mo‐substrate. This is the first time highly efficient kesterite solar cells are demonstrated on transparent electrodes, which opens up new opportunities for these earth‐abundant elements composed of thin film photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.