Abstract

In this study, two ortho-quinoidal compounds, 1,10-phenanthroline-5,6-dione (PD) and 9,10-phenanthrenequinone (PQ), were examined as electron transfer mediators suitable for amperometric glucose biosensors. The dependences of the electrochemical responses of PD- and PQ-based amperometric glucose biosensors on varied concentrations of glucose were investigated under aerobic and anaerobic conditions. The PD-modified graphite rod (GR) electrode revealed a current response seven times higher than that of the PQ-modified GR electrode. The reactivity indices of ortho-quinoidals assessed by means of B3LYP functional method applying 6-311G(D) basis set showed that the electron-accepting potency for PD was markedly higher as compared with that of PQ. Compared to PQ, considerably higher reactivity of PD has been defined in the reactions with NADP+-ferredoxin reductase (FNR, EC 1.18.1.2) as a model single-electron transfer FAD-dependent enzyme, which provided an additional evidence for PD as a more efficient mediator compared to PQ. This study illustrates that PD can be applied as a redox mediator for glucose oxidase and it could be more suitable for a reagent-less biosensor design than PQ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call