Abstract
Behavior of laminar vortex rings with circumferential flow, so-called swirl, were investigated using flow visualization, to evaluate the transport efficiency of the ejected fluid as vortex rings. In this study, the interval time of the vortex ring ejection, the formation number of vortex ring LO/DO (the normalized length of the ejected slug of fluid), and the angular velocity of the ejected fluid ? are changed, while the mean ejection velocity is fixed. When vortex rings were generated at a short time interval, independent of LO/DO and ?, they were broken, and most of the fluid included in them was diffused near the orifice. When the vortex rings with little mutual interference were generated at an appropriate interval time, the breakdown of vortex ring structure is suppressed with moderate swirling flow. In those cases, each vortex ring moves separately for a long distance and the distribution area becomes wider as LO/DO increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.